Gib eine Aufgabe ein ...
Finite Mathematik Beispiele
,
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.2.2
Vereinfache die linke Seite.
Schritt 1.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2.1.2
Dividiere durch .
Schritt 1.2.3
Vereinfache die rechte Seite.
Schritt 1.2.3.1
Vereinfache jeden Term.
Schritt 1.2.3.1.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 1.2.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2
Schritt 2.1
Ersetze alle in durch .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache .
Schritt 2.2.1.1
Vereinfache jeden Term.
Schritt 2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 2.2.1.1.2
Multipliziere .
Schritt 2.2.1.1.2.1
Mutltipliziere mit .
Schritt 2.2.1.1.2.2
Kombiniere und .
Schritt 2.2.1.1.2.3
Mutltipliziere mit .
Schritt 2.2.1.1.3
Multipliziere .
Schritt 2.2.1.1.3.1
Mutltipliziere mit .
Schritt 2.2.1.1.3.2
Kombiniere und .
Schritt 2.2.1.1.3.3
Mutltipliziere mit .
Schritt 2.2.1.1.4
Vereinfache jeden Term.
Schritt 2.2.1.1.4.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.1.1.4.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 2.2.1.3
Kombiniere und .
Schritt 2.2.1.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.1.6
Mutltipliziere mit .
Schritt 2.2.1.7
Subtrahiere von .
Schritt 2.2.1.8
Faktorisiere aus heraus.
Schritt 2.2.1.8.1
Faktorisiere aus heraus.
Schritt 2.2.1.8.2
Faktorisiere aus heraus.
Schritt 2.2.1.8.3
Faktorisiere aus heraus.
Schritt 2.2.1.9
Schreibe als um.
Schritt 2.2.1.10
Faktorisiere aus heraus.
Schritt 2.2.1.11
Faktorisiere aus heraus.
Schritt 2.2.1.12
Ziehe das Minuszeichen vor den Bruch.
Schritt 3
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Schritt 3.2.1
Vereinfache die linke Seite.
Schritt 3.2.1.1
Vereinfache .
Schritt 3.2.1.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.1.1.2
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.1.1.3
Faktorisiere aus heraus.
Schritt 3.2.1.1.1.4
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.1.5
Forme den Ausdruck um.
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.2.1
Faktorisiere aus heraus.
Schritt 3.2.1.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.3
Forme den Ausdruck um.
Schritt 3.2.1.1.3
Multipliziere.
Schritt 3.2.1.1.3.1
Mutltipliziere mit .
Schritt 3.2.1.1.3.2
Mutltipliziere mit .
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Vereinfache .
Schritt 3.2.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.1.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.2.1.1.2
Faktorisiere aus heraus.
Schritt 3.2.2.1.1.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.1.4
Forme den Ausdruck um.
Schritt 3.2.2.1.2
Mutltipliziere mit .
Schritt 3.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 3.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.3.2
Subtrahiere von .
Schritt 3.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.4.1
Teile jeden Ausdruck in durch .
Schritt 3.4.2
Vereinfache die linke Seite.
Schritt 3.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.1.2
Dividiere durch .
Schritt 3.4.3
Vereinfache die rechte Seite.
Schritt 3.4.3.1
Dividiere durch .
Schritt 4
Schritt 4.1
Ersetze alle in durch .
Schritt 4.2
Vereinfache die rechte Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.2.1.2
Vereinfache den Ausdruck.
Schritt 4.2.1.2.1
Mutltipliziere mit .
Schritt 4.2.1.2.2
Addiere und .
Schritt 4.2.1.2.3
Dividiere durch .
Schritt 5
Die Lösung des Systems ist der vollständige Satz geordneter Paare, die gültige Lösungen sind.
Schritt 6
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Punkt-Form:
Gleichungsform:
Schritt 7